Loading...

terça-feira, 15 de fevereiro de 2011

PROPRIEDADES DA RADICIAÇÃO 9º ANO

Propriedades da Radiciação

As propriedades que vamos estudar agora são consideradas no conjunto dos números reais positivos ou nulos, podendo não se verificar caso o radicando seja negativo, pois como sabemos, não existe raiz real de um número negativo.

A Raiz de uma Potência é uma Potência com Expoente Fracionário

Assim como de uma potenciação podemos chegar a uma radiciação, desta podemos chegar a uma potenciação:
Exemplo:
Já que n não pode ser zero, a partir desta propriedade concluímos que não existe raiz de índice zero. Se n fosse zero, o denominador da fração do expoente seria zero, que sabemos não ser permitido.

Mudança de Índice pela sua Multiplicação/Divisão e do Expoente do Radicando por um Mesmo número Não Nulo

Se multiplicarmos ou dividirmos tanto o índice do radical, quanto o expoente do radicando por um mesmo número diferente de zero, o valor do radical continuará o mesmo:
Exemplos:

Raiz de uma Potência

A raiz n de uma potência de a elevado a m, é a potência m da raiz n de a:
Exemplo:

Produto de Radicais de Mesmo Índice

O produto de dois radicais de mesmo índice é igual à raiz deste índice do produto dos dois radicandos:
Exemplo:
Vamos verificar:

Divisão de Radicais de Mesmo Índice

O quociente de dois radicais de mesmo índice é igual a raiz deste índice do quociente dos dois radicandos:
Exemplo:
Verificando:

Simplificação de Radicais Através da Fatoração

Podemos simplificar e em alguns casos até mesmo eliminar radicais, através da decomposição do radicando em fatores primos. O raciocínio é simples, decompomos o radicando em fatores primos por fatoração e depois simplificamos os expoentes que são divisíveis pelo índice do radicando.
Vamos simplificar  decompondo 91125 em fatores primos:
Como 91125 = 36 . 53 podemos dizer que:
Repare que tanto o expoente do fator 36, quanto o expoente do fator 53 são múltiplos do índice do radicando que é igual a 3. Vamos então simplificá-los:
Perceba que através da fatoração de 91125 e da simplificação dos expoentes dos fatores pelo índice do radicando, extraímos a sua raiz cúbica eliminando assim o radical.
Vejamos agora o caso do radical :
Logo 2205 = 32 . 5 . 72, então:
Como os expoentes dos fatores 32 e 72 são divisíveis pelo índice 2, vamos simplificá-los retirando-os assim do radical:
Neste caso o expoente do fator 5 não é divisível pelo índice 2 do radicando, por isto após a simplificação não conseguimos eliminar o radical.
Agora vamos analisar o número :
Note que 729 = 36, então:
Neste caso o expoente de 36 não é divisível pelo índice 5, mas é maior, então podemos escrever:
Repare que agora o expoente do fator 35 é divisível pelo índice 5, podemos então retirá-lo do radical:
Agora vamos pensar um pouco. Após a fatoração tínhamos o radical . O expoente 6 não é divisível por 5, pois ao realizarmos a divisão, obtemos um quociente de 1 e um resto também de 1. Pois bem, o 1 do quociente será o expoente da base 3 ao sair o radical. A parte que ainda ficou no radical terá como expoente o 1 do resto. Vamos a alguns exemplos para melhor entendermos a questão:
Simplifique .
Dividindo 18 por 7 obtemos um quociente de 2 é um resto de 4, logo fora do radical a base 5 terá o expoente 2do quociente e a base dentro do radical terá o expoente 4 que é o resto da divisão:
Logo:
Outro exemplo, simplifique .
A divisão de 15 por 5 resulta em quociente 3 e resto 0, pois a divisão é exata, mas não há problema. Seguindo as explicações temos:
Veja que quando o é resto for zero podemos eliminar o radical, já que o radicando sempre será igual a 1, pois todo número natural não nulo elevado a zero é igual a um:

2 comentários:

  1. Professor Wagner meu nome e Thalen dos Santos, tive aula com você na Faculdade Filadelfia,sobre informatica, gostaria que você postasse alguns exercicios com relação a Equação, e Frações com gabarito, pois prucuro os mesmos na internet e não acho com gabarito, porque estou estudando para um concurso publico e preciso de sua ajuda, se poder me ajudar obrigado!!.

    ResponderExcluir